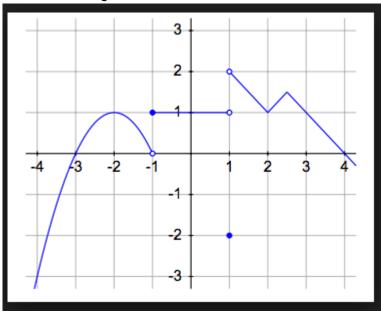
|                                              | ARTS IN MOTION CHARTER SCHOOL   12th AP Calculus AB CURRICULUM MAP                                                                                                                               |                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                |                                     |  |  |
|----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|--|--|
| Projects                                     | Essential Questions                                                                                                                                                                              | Enduring Understandings                                                                                                                                                                                                                                               | Math Concepts                                                                                                                                                                                                                                                                                  | ccss                                                                                                                                                                                                           | Final Product                       |  |  |
| Function<br>Behavior &<br>Limits             | <ul> <li>How close can two<br/>points get together<br/>without touching?</li> </ul>                                                                                                              | <ul> <li>Limits allow us to find values of<br/>instantaneous rates of change.</li> </ul>                                                                                                                                                                              | <ul><li>Continuity</li><li>Limits</li></ul>                                                                                                                                                                                                                                                    | <ul> <li>NGSS.HS.A-APR.3</li> <li>NGSS.HS.N-VM.6</li> <li>NGSS.HS.N-VM.7</li> <li>NGSS.HS.N-VM.8</li> <li>NGSS.HS.N-VM.9</li> <li>NGSS.HS.N-VM.10</li> <li>NGSS.HS.N-VM.11</li> <li>NGSS.HS.N-VM.12</li> </ul> | Books of Limit                      |  |  |
| Meaning &<br>Computation<br>of Derivatives   | How do we mathematically represent change?                                                                                                                                                       | Derivatives are "slope functions" that<br>allow us to describe how (most) functions<br>are changing at every point                                                                                                                                                    | <ul> <li>Analyze Derivatives</li> <li>Continuity</li> <li>Derivative as Limit</li> <li>Derivatives of Functions</li> </ul>                                                                                                                                                                     | •                                                                                                                                                                                                              | Multiple Choice     Assessment      |  |  |
| Graphs and<br>Applications of<br>Derivatives | <ul> <li>What do the derivatives of functions tell us about the functions themselves?</li> <li>What types of problems do an understanding of derivatives and rates allow us to solve?</li> </ul> | The derivative represents the rate of change of a function and can be used to find zeroes and intervals of increase and decrease, a very helpful fact which can be applied to a variety of situations.                                                                | <ul> <li>Analyze Derivatives</li> <li>Interpret Derivatives</li> </ul>                                                                                                                                                                                                                         | •                                                                                                                                                                                                              | <ul> <li>Derivatives FRQ</li> </ul> |  |  |
| Population<br>Dynamics                       | <ul> <li>What is the most appropriate way to model data?</li> <li>What are the significant features of a graph?</li> </ul>                                                                       | <ul> <li>Setting the second derivative equal to zero provides information about the concavity of a graph.</li> <li>The first and second derivative of a function can be represented graphically and verbally in addition to the standard numerical method.</li> </ul> | <ul> <li>Comparing/ Contrasting</li> <li>Hypothesizing</li> <li>Identifying Patterns and<br/>Relationships</li> <li>Introduction and<br/>Conclusion</li> <li>Making Connections &amp;<br/>Inferences</li> <li>Modeling</li> <li>Organization (Transitions,<br/>Cohesion, Structure)</li> </ul> |                                                                                                                                                                                                                | Performance task                    |  |  |

| Meaning<br>Computation<br>of<br>Antiderivatives | What is the opposite of a derivative (i.e. what functions has as its derivative)?                                | <ul> <li>Integrating a derivative of a function can<br/>tell you how the function itself is growing<br/>and changing.</li> </ul>                                                                                                                                                                               | <ul> <li>Area Under Curves</li> <li>Fundamental Theorem of<br/>Calculus</li> </ul>                                                                                                                                                                | <ul> <li>Riemann Sums:         Performance         Assessment     </li> <li>Meaning and         Computation of         Antiderivatives         Performance Task     </li> </ul> |
|-------------------------------------------------|------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Techniques of<br>Integration                    | <ul> <li>How do rates<br/>accumulate?</li> </ul>                                                                 | <ul> <li>Integrating a derivative of a function can<br/>tell you how the function itself is growing<br/>and changing.</li> </ul>                                                                                                                                                                               | <ul> <li>Accumulating Rates</li> <li>Fundamental Theorem of<br/>Calculus</li> </ul>                                                                                                                                                               | <ul> <li>Motion Modules         Performance task         Techniques         Integration         Performance Task     </li> </ul>                                                |
| Area and<br>Volume                              | <ul> <li>How can integrals be<br/>used to find areas and<br/>volumes of more<br/>complicated figures?</li> </ul> | We can find the volume of almost shape<br>we can imagine!                                                                                                                                                                                                                                                      | ● Area & Volume                                                                                                                                                                                                                                   | <ul> <li>Area and Volume<br/>Performance Task</li> </ul>                                                                                                                        |
| Vivacious<br>Volumes                            | How can we apply the<br>fundamental theorem<br>of calculus to analyze<br>objects around us?                      | Calculus can be used to compute infinite sums, which allows us to determine exact measurements (such as volume) where basic analysis/manipulations would only lead to approximations.                                                                                                                          | <ul> <li>Identifying Patterns and<br/>Relationships</li> <li>Justifying / Constructing<br/>an Explanation</li> <li>Modeling</li> <li>Multimedia in Written<br/>Production</li> <li>Norms / Active Listening</li> <li>Oral Presentation</li> </ul> | Performance Task                                                                                                                                                                |
| Differential<br>Equations                       | <ul> <li>How can we solve<br/>equations defined by<br/>the derivative with 2<br/>variables?</li> </ul>           | <ul> <li>Some equations that contain 2 variables that cannot be directly integrated can be manipulated so that they can be.</li> <li>There is a difference between a 'general solution' which contains all possible solutions and a 'particular solution' found by establishing initial conditions.</li> </ul> | Differential Equations                                                                                                                                                                                                                            | <ul> <li>Traditional         Performance         Assessment     </li> </ul>                                                                                                     |

|                            | ARTS IN MOTION CHARTER SCHOOL   12th AP Calculus AB UNIT PLAN                                                                                                                                                       |  |  |  |
|----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Project                    | Function Behavior and Limits                                                                                                                                                                                        |  |  |  |
| Suggested Time             | • 3 Weeks                                                                                                                                                                                                           |  |  |  |
| Essential Questions        | How close can two points get together without touching?                                                                                                                                                             |  |  |  |
| Enduring<br>Understandings | Limits allow us to find values of instantaneous rates of change.                                                                                                                                                    |  |  |  |
| Math Concepts              | <ul><li>Continuity</li><li>Limits</li></ul>                                                                                                                                                                         |  |  |  |
| Focus Areas                | • 1) Graphs 1: Limits and Continuity                                                                                                                                                                                |  |  |  |
| coss                       | •                                                                                                                                                                                                                   |  |  |  |
| ccss                       |                                                                                                                                                                                                                     |  |  |  |
| Checkpoints                | <ul> <li>Limits at Removable and Jump Discontinuities</li> <li>One-Sided Limits and Other Limit Properties</li> <li>Algebraic Limits</li> <li>Limits at Infinity Asymptotic Behavior</li> <li>Continuity</li> </ul> |  |  |  |
| Final Product              | Books of Limit (See attached Sample)                                                                                                                                                                                |  |  |  |

|         | ARTS IN MOTION CHARTER SCHOOL   12th AP Calculus AB LESSON PLAN       |                        |                                                         |               |                |  |
|---------|-----------------------------------------------------------------------|------------------------|---------------------------------------------------------|---------------|----------------|--|
| Project | <ul> <li>Function         Behavior         and Limits     </li> </ul> | Essential<br>Questions | How close can two points get together without touching? | Final Product | Books of Limit |  |

| Checkpoint    | Limits at Removable and Jump Discontinuities (See attached Sample)                                                                                                                                                                                                                                         |
|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Math Concepts | <ul> <li>Continuity</li> <li>Limits</li> </ul>                                                                                                                                                                                                                                                             |
| Objective     | <ul> <li>Identifying limits from graphs and tables. Identifying different points of discontinuity (and unbounded behavior) from tables and<br/>graphs. Estimating limits numerically by plugging points in closer and closer to the desired value to see how the values<br/>approach the limit.</li> </ul> |
| Activities    | <ul> <li>Warm Up and Notes: Limits at Removable and Jump Discontinuities (See attached Sample)</li> <li>Task Card: Limits at Removable and Jump Discontinuities</li> </ul>                                                                                                                                 |
| Resources     | Limit Matching Lab (linked)                                                                                                                                                                                                                                                                                |
| Assessment    | Performance task assessment using cognitive skills (See attached Sample)                                                                                                                                                                                                                                   |


### **Function Behavior and Limits**

**CheckPoint: Limits at Removable and Jump Discontinuities** 

| Concept(s) | : |
|------------|---|
|------------|---|

Limits

Refer to the piecewise function in the image below:



#### Part A:

Name 3 locations on the function above where the limit would be equivalent to 1. Explain all of your choices.

#### Your Answer:

#### Part B:

Explain why the limit does not exist at x = 1 even though the function is defined at x = 1.

#### Your Answer:

#### Part C:

Besides x = 1, at what other x-values on the piecewise function does the limit not exist? Explain your choice(s).

#### Your Answer:

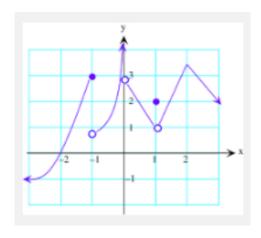
#### Part D:

A student in your class argues that the following statement is correct with regard to the function above:

$$\lim_{x \to -1} f(x) = 1$$

The student insists that this is the case because there is a closed point on the coordinate (-1, 1), so thus, the limit = 1. Explain where the student went wrong.

| our Answer: |  |  |  |
|-------------|--|--|--|
|             |  |  |  |
|             |  |  |  |
|             |  |  |  |
|             |  |  |  |
|             |  |  |  |
|             |  |  |  |
|             |  |  |  |
|             |  |  |  |
|             |  |  |  |
|             |  |  |  |
|             |  |  |  |
|             |  |  |  |
|             |  |  |  |
|             |  |  |  |
|             |  |  |  |


### Class 2 - Limits at Removable and Jump Discontinuities

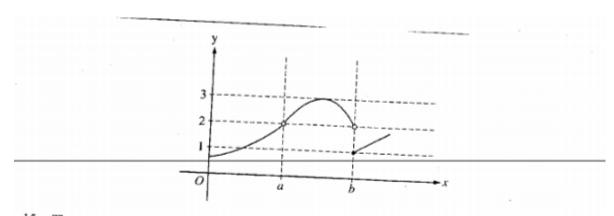
WARM UP

**Directions:** use your notes from the pre-work to answer the questions below. Reminder: the pre-work from Class 1 was for you to watch and take notes on:

- "Introduction to Limits"
- "Limits from graphs: function undefined"

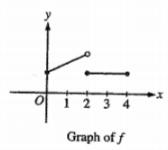
Look at the graph below:




- (1) When x = -2, what is the y-value of the function?
- (2) When x = -1, what is the y-value of the function?
- (3) How was determining the y-value of the function at x = -2 different than determining the y-value at x = -1? (Explain your answer)

(4) Think back to the two videos that you watched for today's pre-work. How are "limits" of functions and "y-values" of functions different from each other?

### **Done Early?**


Challenge Yourself: AP Calculus Limits Practice Problems (from the AP Exam)

#### **Question 1**



- 15. The graph of the function f is shown in the figure above. Which of the following statements about f is true?
  - (A)  $\lim_{x \to a} f(x) \approx \lim_{x \to b} f(x)$
  - (B)  $\lim_{x \to a} f(x) = 2$
  - (C)  $\lim_{x \to b} f(x) = 2$
  - (D)  $\lim_{x \to b} f(x) = 1$
  - (E) lim f(x) does not exist.

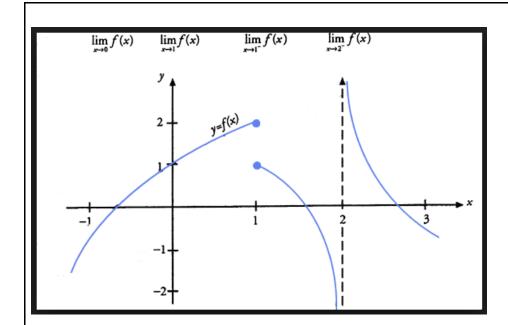
#### **Question 2**

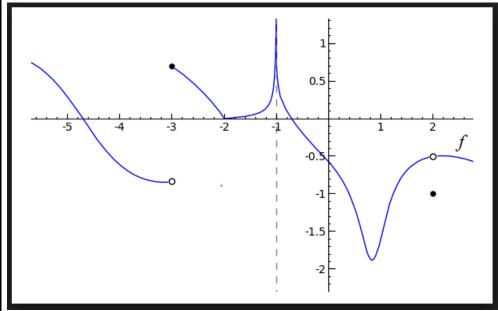


- 77. The figure above shows the graph of a function f with domain  $0 \le x \le 4$ . Which of the following statements are true?
  - I.  $\lim_{x\to 2^-} f(x)$  exists.
  - II.  $\lim_{x\to 2^+} f(x)$  exists.
  - III.  $\lim_{x\to 2} f(x)$  exists.
  - (A) I only
- (B) II only
- (C) I and II only
- (D) I and III only
- (E) I, II, and III

# Class 2 - Limits at Removable and Jump Discontinuities NOTES




- "Introduction to Limits"
- "Limits from graphs: function undefined"


**Example of a Point that does not have a limit:** 

**Important:** We take limits at x-value points, not of entire functions. So, just because we see a discontinuity within a function, this does not imply that the entire function does not have a limit. It just means that the function doesn't have a limit at the x-value of the discontinuity.

#### **Limit Notation:**

| Functions that have limits at all x-values | Functions that don't have limits of at all x-values. |
|--------------------------------------------|------------------------------------------------------|
|                                            |                                                      |
|                                            |                                                      |
|                                            |                                                      |
|                                            |                                                      |
|                                            |                                                      |
|                                            |                                                      |
|                                            |                                                      |
|                                            |                                                      |
|                                            |                                                      |
|                                            |                                                      |
|                                            |                                                      |
|                                            |                                                      |
|                                            |                                                      |
|                                            |                                                      |
|                                            |                                                      |
|                                            |                                                      |
|                                            |                                                      |
|                                            |                                                      |
|                                            |                                                      |
|                                            |                                                      |
|                                            |                                                      |
|                                            |                                                      |





What is the limit as x approaches -2?

What is the limit as x approaches 2?

What is the limit as x approaches -3?

#### **Description of Performance Task**

You are to construct a piece-wise defined function. Your piece-wise defined function should:

- be defined by at least 12 different pieces, including at least one of each of the following functions:
  - a. Constant
  - b. Linear
  - c. Absolute Value
  - d. Quadratic
  - e. Polynomial of degree 3 or higher
  - f. Exponential
  - g. Rational
  - h. Irrational (Square Root or Cube Root)
  - i. Sine/Cosine
- 2) be discontinuous in at least 8 places, including at least two instances of each of the following types of discontinuity:
  - a. removable
  - b. jump/step
  - c. infinite/asymptotic
- 3) Bonus: Be continuous in at least 2 places where one piece ends and another piece begins, including one instance of each of the following types of continuity:
  - a. continuous but not differentiable
  - b. continuous and differentiable

#### Your final product will include two graphs:

- a hand-drawn graph using a poster board or presentation paper
- a <u>computer-drawn graph</u> using either Winplot or Geogebra or Demos

### Your final product will include a completed version of the following graphic organizer:

| Numbere    | Algebraic representation of function | Type of function | Domain of function | Range of function |
|------------|--------------------------------------|------------------|--------------------|-------------------|
| d function | or function                          |                  |                    |                   |
| 1.         |                                      |                  |                    |                   |
| 2.         |                                      |                  |                    |                   |
| 3.         |                                      |                  |                    |                   |
| 4.         |                                      |                  |                    |                   |
| 5.         |                                      |                  |                    |                   |
| 6.         |                                      |                  |                    |                   |
| 7.         |                                      |                  |                    |                   |
| 8.         |                                      |                  |                    |                   |
| 9.         |                                      |                  |                    |                   |
| 10.        |                                      |                  |                    |                   |
| 11.        |                                      |                  |                    |                   |
| 12.        |                                      |                  |                    |                   |

(you can add more rows if you use more than 12 functions)

Your final product will include a completed version of the following graphic organizer:

At each 2-coordinate where one piece ends and another piece begins, complete the following:

| Limit                      | Verbal explanation (using mathematical notation) of why the limit has this value (or why the limit doesn't exist) |
|----------------------------|-------------------------------------------------------------------------------------------------------------------|
| ??? <sub>?→[</sub> ?(?) =  |                                                                                                                   |
| 222 <sub>2→[]</sub> 2(2) = |                                                                                                                   |
| 222 <sub>2→[]</sub> 2(2) = |                                                                                                                   |
| 222 <sub>2→[</sub> 2(2) =  |                                                                                                                   |
| 222 <sub>2→[]</sub> 2(2) = |                                                                                                                   |
| 222 <sub>7→[]</sub> 2(2) = |                                                                                                                   |
| 222 <sub>7→[</sub> 2(2) =  |                                                                                                                   |
| 222 <sub>7→[</sub> 2(2) =  |                                                                                                                   |
| 222 <sub>7→[</sub> 2(2) =  |                                                                                                                   |
| 222 <sub>2→[]</sub> 2(2) = |                                                                                                                   |
| 222 <sub>0→[]</sub> 2(2) = |                                                                                                                   |

### Your final product will include a completed version of the following graphic organizer:

| Lettered     | Type of discontinuity: | ②-coordinate | Use limit notation (including one-sided   |
|--------------|------------------------|--------------|-------------------------------------------|
| discontinuit | <b>R</b> =removable    | of           | limits) to mathematically explain why the |

| У  | J/S=jump/step I/A=infinite/asymptoti c | discontinuity | type of discontinuity occurs at the indicated 2-coordinate. |
|----|----------------------------------------|---------------|-------------------------------------------------------------|
| A. |                                        |               |                                                             |
| В. |                                        |               |                                                             |
| C. |                                        |               |                                                             |
| D. |                                        |               |                                                             |
| E. |                                        |               |                                                             |
| F. |                                        |               |                                                             |
| G. |                                        |               |                                                             |
| Н. |                                        |               |                                                             |

### Your final product will include a completed version of the following graphic organizer:

| Lettered   | Type of        | 2-coordinate  | Use precise mathematical language or limit       |
|------------|----------------|---------------|--------------------------------------------------|
| continuity | continuity:    | of continuity | notation (including one-sided limits) to         |
|            | CD=continuous/ |               | mathematically explain why the type of           |
|            | differentiable |               | continuity occurs at the indicated 2-coordinate. |
|            | CND=continuous |               |                                                  |

|                                                                                                      | /                     |                  |                                             |  |
|------------------------------------------------------------------------------------------------------|-----------------------|------------------|---------------------------------------------|--|
|                                                                                                      | not differentiable    |                  |                                             |  |
|                                                                                                      |                       |                  |                                             |  |
| Р.                                                                                                   |                       |                  |                                             |  |
|                                                                                                      |                       |                  |                                             |  |
|                                                                                                      |                       |                  |                                             |  |
|                                                                                                      |                       |                  |                                             |  |
| Q.                                                                                                   |                       |                  |                                             |  |
|                                                                                                      |                       |                  |                                             |  |
|                                                                                                      |                       |                  | <u> </u>                                    |  |
|                                                                                                      |                       |                  |                                             |  |
| Your final pro                                                                                       | duct will include a c | ompleted version | of the following graphic organizer:         |  |
| Drovido a list                                                                                       | of the demains as     | hich your        | Provide a list of the domains on which your |  |
|                                                                                                      | of the domains on w   | nich your        | function is decreasing                      |  |
| function is inc                                                                                      | reasing               |                  | Tunction is decreasing                      |  |
|                                                                                                      |                       |                  |                                             |  |
|                                                                                                      |                       |                  |                                             |  |
|                                                                                                      |                       |                  |                                             |  |
|                                                                                                      |                       |                  |                                             |  |
|                                                                                                      |                       |                  |                                             |  |
|                                                                                                      |                       |                  |                                             |  |
|                                                                                                      |                       |                  |                                             |  |
|                                                                                                      |                       |                  |                                             |  |
|                                                                                                      |                       |                  |                                             |  |
|                                                                                                      |                       |                  |                                             |  |
|                                                                                                      |                       |                  |                                             |  |
|                                                                                                      |                       |                  |                                             |  |
|                                                                                                      |                       |                  |                                             |  |
|                                                                                                      |                       |                  |                                             |  |
|                                                                                                      |                       |                  |                                             |  |
|                                                                                                      |                       |                  |                                             |  |
|                                                                                                      |                       |                  |                                             |  |
|                                                                                                      |                       |                  |                                             |  |
|                                                                                                      |                       |                  |                                             |  |
|                                                                                                      |                       |                  |                                             |  |
|                                                                                                      |                       |                  |                                             |  |
|                                                                                                      |                       |                  |                                             |  |
|                                                                                                      |                       |                  |                                             |  |
|                                                                                                      |                       |                  |                                             |  |
| To show a numeric understanding of asymptotic behavior, identify a vertical asymptote on your graph. |                       |                  |                                             |  |
|                                                                                                      |                       |                  |                                             |  |
|                                                                                                      |                       |                  |                                             |  |
| Equation of vertical asymptote:                                                                      |                       |                  |                                             |  |
|                                                                                                      |                       |                  |                                             |  |

Construct a table of values of the function for values of  $\ensuremath{\mathbb{Z}}$  getting closer and closer to the  $\ensuremath{\mathbb{Z}}$ -value of the vertical asymptote:

| 2 | 7(7) |
|---|------|
|   |      |
|   |      |
|   |      |
|   |      |
|   |      |
|   |      |
|   |      |
|   |      |
|   |      |
|   |      |
|   |      |
|   |      |
|   |      |
|   |      |