| | ARTS IN MOTION CHARTER SCHOOL 12th AP Calculus AB CURRICULUM MAP | | | | | | | |--|--|---|--|--|-------------------------------------|--|--| | Projects | Essential Questions | Enduring Understandings | Math Concepts | ccss | Final Product | | | | Function
Behavior &
Limits | How close can two
points get together
without touching? | Limits allow us to find values of
instantaneous rates of change. | ContinuityLimits | NGSS.HS.A-APR.3 NGSS.HS.N-VM.6 NGSS.HS.N-VM.7 NGSS.HS.N-VM.8 NGSS.HS.N-VM.9 NGSS.HS.N-VM.10 NGSS.HS.N-VM.11 NGSS.HS.N-VM.12 | Books of Limit | | | | Meaning &
Computation
of Derivatives | How do we mathematically represent change? | Derivatives are "slope functions" that
allow us to describe how (most) functions
are changing at every point | Analyze Derivatives Continuity Derivative as Limit Derivatives of Functions | • | Multiple Choice Assessment | | | | Graphs and
Applications of
Derivatives | What do the derivatives of functions tell us about the functions themselves? What types of problems do an understanding of derivatives and rates allow us to solve? | The derivative represents the rate of change of a function and can be used to find zeroes and intervals of increase and decrease, a very helpful fact which can be applied to a variety of situations. | Analyze Derivatives Interpret Derivatives | • | Derivatives FRQ | | | | Population
Dynamics | What is the most appropriate way to model data? What are the significant features of a graph? | Setting the second derivative equal to zero provides information about the concavity of a graph. The first and second derivative of a function can be represented graphically and verbally in addition to the standard numerical method. | Comparing/ Contrasting Hypothesizing Identifying Patterns and
Relationships Introduction and
Conclusion Making Connections &
Inferences Modeling Organization (Transitions,
Cohesion, Structure) | | Performance task | | | | Meaning
Computation
of
Antiderivatives | What is the opposite of a derivative (i.e. what functions has as its derivative)? | Integrating a derivative of a function can
tell you how the function itself is growing
and changing. | Area Under Curves Fundamental Theorem of
Calculus | Riemann Sums: Performance Assessment Meaning and Computation of Antiderivatives Performance Task | |---|--|--|---|---| | Techniques of
Integration | How do rates
accumulate? | Integrating a derivative of a function can
tell you how the function itself is growing
and changing. | Accumulating Rates Fundamental Theorem of
Calculus | Motion Modules Performance task Techniques Integration Performance Task | | Area and
Volume | How can integrals be
used to find areas and
volumes of more
complicated figures? | We can find the volume of almost shape
we can imagine! | ● Area & Volume | Area and Volume
Performance Task | | Vivacious
Volumes | How can we apply the
fundamental theorem
of calculus to analyze
objects around us? | Calculus can be used to compute infinite sums, which allows us to determine exact measurements (such as volume) where basic analysis/manipulations would only lead to approximations. | Identifying Patterns and
Relationships Justifying / Constructing
an Explanation Modeling Multimedia in Written
Production Norms / Active Listening Oral Presentation | Performance Task | | Differential
Equations | How can we solve
equations defined by
the derivative with 2
variables? | Some equations that contain 2 variables that cannot be directly integrated can be manipulated so that they can be. There is a difference between a 'general solution' which contains all possible solutions and a 'particular solution' found by establishing initial conditions. | Differential Equations | Traditional Performance Assessment | | | ARTS IN MOTION CHARTER SCHOOL 12th AP Calculus AB UNIT PLAN | | | | |----------------------------|---|--|--|--| | Project | Function Behavior and Limits | | | | | Suggested Time | • 3 Weeks | | | | | Essential Questions | How close can two points get together without touching? | | | | | Enduring
Understandings | Limits allow us to find values of instantaneous rates of change. | | | | | Math Concepts | ContinuityLimits | | | | | Focus Areas | • 1) Graphs 1: Limits and Continuity | | | | | coss | • | | | | | ccss | | | | | | Checkpoints | Limits at Removable and Jump Discontinuities One-Sided Limits and Other Limit Properties Algebraic Limits Limits at Infinity Asymptotic Behavior Continuity | | | | | Final Product | Books of Limit (See attached Sample) | | | | | | ARTS IN MOTION CHARTER SCHOOL 12th AP Calculus AB LESSON PLAN | | | | | | |---------|---|------------------------|---|---------------|----------------|--| | Project | Function Behavior and Limits | Essential
Questions | How close can two points get together without touching? | Final Product | Books of Limit | | | Checkpoint | Limits at Removable and Jump Discontinuities (See attached Sample) | |---------------|--| | Math Concepts | Continuity Limits | | Objective | Identifying limits from graphs and tables. Identifying different points of discontinuity (and unbounded behavior) from tables and
graphs. Estimating limits numerically by plugging points in closer and closer to the desired value to see how the values
approach the limit. | | Activities | Warm Up and Notes: Limits at Removable and Jump Discontinuities (See attached Sample) Task Card: Limits at Removable and Jump Discontinuities | | Resources | Limit Matching Lab (linked) | | Assessment | Performance task assessment using cognitive skills (See attached Sample) | ### **Function Behavior and Limits** **CheckPoint: Limits at Removable and Jump Discontinuities** | Concept(s) | : | |------------|---| |------------|---| Limits Refer to the piecewise function in the image below: #### Part A: Name 3 locations on the function above where the limit would be equivalent to 1. Explain all of your choices. #### Your Answer: #### Part B: Explain why the limit does not exist at x = 1 even though the function is defined at x = 1. #### Your Answer: #### Part C: Besides x = 1, at what other x-values on the piecewise function does the limit not exist? Explain your choice(s). #### Your Answer: #### Part D: A student in your class argues that the following statement is correct with regard to the function above: $$\lim_{x \to -1} f(x) = 1$$ The student insists that this is the case because there is a closed point on the coordinate (-1, 1), so thus, the limit = 1. Explain where the student went wrong. | our Answer: | | | | |-------------|--|--|--| ### Class 2 - Limits at Removable and Jump Discontinuities WARM UP **Directions:** use your notes from the pre-work to answer the questions below. Reminder: the pre-work from Class 1 was for you to watch and take notes on: - "Introduction to Limits" - "Limits from graphs: function undefined" Look at the graph below: - (1) When x = -2, what is the y-value of the function? - (2) When x = -1, what is the y-value of the function? - (3) How was determining the y-value of the function at x = -2 different than determining the y-value at x = -1? (Explain your answer) (4) Think back to the two videos that you watched for today's pre-work. How are "limits" of functions and "y-values" of functions different from each other? ### **Done Early?** Challenge Yourself: AP Calculus Limits Practice Problems (from the AP Exam) #### **Question 1** - 15. The graph of the function f is shown in the figure above. Which of the following statements about f is true? - (A) $\lim_{x \to a} f(x) \approx \lim_{x \to b} f(x)$ - (B) $\lim_{x \to a} f(x) = 2$ - (C) $\lim_{x \to b} f(x) = 2$ - (D) $\lim_{x \to b} f(x) = 1$ - (E) lim f(x) does not exist. #### **Question 2** - 77. The figure above shows the graph of a function f with domain $0 \le x \le 4$. Which of the following statements are true? - I. $\lim_{x\to 2^-} f(x)$ exists. - II. $\lim_{x\to 2^+} f(x)$ exists. - III. $\lim_{x\to 2} f(x)$ exists. - (A) I only - (B) II only - (C) I and II only - (D) I and III only - (E) I, II, and III # Class 2 - Limits at Removable and Jump Discontinuities NOTES - "Introduction to Limits" - "Limits from graphs: function undefined" **Example of a Point that does not have a limit:** **Important:** We take limits at x-value points, not of entire functions. So, just because we see a discontinuity within a function, this does not imply that the entire function does not have a limit. It just means that the function doesn't have a limit at the x-value of the discontinuity. #### **Limit Notation:** | Functions that have limits at all x-values | Functions that don't have limits of at all x-values. | |--|--| What is the limit as x approaches -2? What is the limit as x approaches 2? What is the limit as x approaches -3? #### **Description of Performance Task** You are to construct a piece-wise defined function. Your piece-wise defined function should: - be defined by at least 12 different pieces, including at least one of each of the following functions: - a. Constant - b. Linear - c. Absolute Value - d. Quadratic - e. Polynomial of degree 3 or higher - f. Exponential - g. Rational - h. Irrational (Square Root or Cube Root) - i. Sine/Cosine - 2) be discontinuous in at least 8 places, including at least two instances of each of the following types of discontinuity: - a. removable - b. jump/step - c. infinite/asymptotic - 3) Bonus: Be continuous in at least 2 places where one piece ends and another piece begins, including one instance of each of the following types of continuity: - a. continuous but not differentiable - b. continuous and differentiable #### Your final product will include two graphs: - a hand-drawn graph using a poster board or presentation paper - a <u>computer-drawn graph</u> using either Winplot or Geogebra or Demos ### Your final product will include a completed version of the following graphic organizer: | Numbere | Algebraic representation of function | Type of function | Domain of function | Range of function | |------------|--------------------------------------|------------------|--------------------|-------------------| | d function | or function | | | | | 1. | | | | | | 2. | | | | | | 3. | | | | | | 4. | | | | | | 5. | | | | | | 6. | | | | | | 7. | | | | | | 8. | | | | | | 9. | | | | | | 10. | | | | | | 11. | | | | | | 12. | | | | | (you can add more rows if you use more than 12 functions) Your final product will include a completed version of the following graphic organizer: At each 2-coordinate where one piece ends and another piece begins, complete the following: | Limit | Verbal explanation (using mathematical notation) of why the limit has this value (or why the limit doesn't exist) | |----------------------------|---| | ??? _{?→[} ?(?) = | | | 222 _{2→[]} 2(2) = | | | 222 _{2→[]} 2(2) = | | | 222 _{2→[} 2(2) = | | | 222 _{2→[]} 2(2) = | | | 222 _{7→[]} 2(2) = | | | 222 _{7→[} 2(2) = | | | 222 _{7→[} 2(2) = | | | 222 _{7→[} 2(2) = | | | 222 _{2→[]} 2(2) = | | | 222 _{0→[]} 2(2) = | | ### Your final product will include a completed version of the following graphic organizer: | Lettered | Type of discontinuity: | ②-coordinate | Use limit notation (including one-sided | |--------------|------------------------|--------------|---| | discontinuit | R =removable | of | limits) to mathematically explain why the | | У | J/S=jump/step I/A=infinite/asymptoti c | discontinuity | type of discontinuity occurs at the indicated 2-coordinate. | |----|--|---------------|---| | A. | | | | | В. | | | | | C. | | | | | D. | | | | | E. | | | | | F. | | | | | G. | | | | | Н. | | | | ### Your final product will include a completed version of the following graphic organizer: | Lettered | Type of | 2-coordinate | Use precise mathematical language or limit | |------------|----------------|---------------|--| | continuity | continuity: | of continuity | notation (including one-sided limits) to | | | CD=continuous/ | | mathematically explain why the type of | | | differentiable | | continuity occurs at the indicated 2-coordinate. | | | CND=continuous | | | | | / | | | | |--|-----------------------|------------------|---|--| | | not differentiable | | | | | | | | | | | Р. | Q. | | | | | | | | | | | | | | | <u> </u> | | | | | | | | | Your final pro | duct will include a c | ompleted version | of the following graphic organizer: | | | Drovido a list | of the demains as | hich your | Provide a list of the domains on which your | | | | of the domains on w | nich your | function is decreasing | | | function is inc | reasing | | Tunction is decreasing | To show a numeric understanding of asymptotic behavior, identify a vertical asymptote on your graph. | | | | | | | | | | | | | | | | | | Equation of vertical asymptote: | | | | | | | | | | | Construct a table of values of the function for values of $\ensuremath{\mathbb{Z}}$ getting closer and closer to the $\ensuremath{\mathbb{Z}}$ -value of the vertical asymptote: | 2 | 7(7) | |---|------| |