

TIMELINE	September 2 Weeks	September/ October	October	October/ November	December/ January	January	January/ February	February	March	$\begin{gathered} \hline \text { March/ } \\ \text { April } \\ \hline \end{gathered}$	May- June
Instructional Resources Envision Topics to Focus on:	Topic 1 Place Value 6 Lessons	Topic 2 Adding and Subtracting Decimals 8 Lessons	Topic 3: Multiplyin g Whole Numbers 9 Lessons	Topics 4 \& 5: Division with 1 and 2 Digit Divisors Topic 4: 7 Topic 5: 8 Lessons	Topic 8 \& 16 Numerical Expressions, Patterns, and Relationship s Topic 8 8 Lessons Topic 16 2 Lessons 16-1 \& 16-4	Supplemen tal Unit: Divisibility Rules GCF, and Prime and Composite Numbers About 1 Week GCF: Step up to Grade 6 (in Topic 16 5th Grade) *MDIS: G64 Prime/Co mposite: MDIS: G59 Divisibility : MDIS G- 60 and G61	Topics 9: Adding and Subtracting Fractions 10 Lessons	Topic 10: Adding and Subtracting Mixed Numbers 7 Lesson	Data 2 Weeks Topic 14 Only 14-5 Investigatio ns: Growth Patterns (Unit 8) Lesson 1-1, 1-2, 1-3 Mean: MDIS: I-71 and 6th grade edition (19- 3)	Geometry 4th Grade Topic 16 11 Lessons Covering 5.3.A, 5.3.B, 5.3.C, 5.3.H 5th Grade Topic 15 1 Lesson 15-5 5.3.G 6th Grade Topic 17 3 Lessons 17-1, 2, 3 5.3.I, 5.3.F, 5.3.D,E	Your Choice: Topic 6/7 Topic 11, 12, 13 Step Up to 6th Grade Topic 6/7: Multiplying/Di viding Decimals Topic 11: Multiply/Dividi $n g$ Fraction and Mixed Numbers Topic 12: Volume of Solids Topic 13: Units of Measure
Domain	Number and Operations in Base Ten	Number and Operations in Base Ten	Number and Operations in Base Ten Operations and Algebraic Thinking	Number and Operations in Base Ten	Operations and Algebraic Thinking Geometry	Operations and Algebraic Thinking The Number System (6th grade CCSS)	Number and OperationsFractions	Number and OperationsFractions	Statistics and Probability (6th Grade CCSS)	Geometry Measureme nt and Data	
Notes											

EnVision Math Grade 5 Curriculum Map

Basic Skills/Comput ation to Address	Review and practice basic + facts Basic - facts + and - algorithms (3.2.E) Xtramath.o rg will support quick recall of facts	Basic multiplicatio n and division facts	Mastery of multiplicati on and division facts. By the end of 3rd grade, I will know from memory all the multiplicati on facts to 100 and use strategies for division facts (3.OA.7)	Review multiplication and division facts	Review multiplicatio n and division facts	Review multiplicati on and division facts	Review multiplicatio n and division facts	Review multiplicatio n and division facts	Use Google Apps as an additional resource to create surveys.	Be able to identity, describe \& sketch squares, rectangles, parallelogra ms , rhombi, trapezoids kites, intersecting , parallel, perpendicul ar lines, and line segments.	

EnVision Math Grade 5 Curriculum Map

Learning Targets CCSS(Common Core State Standards)	Additional CCSS Covered: ~I can recognize that in a multi-digit number, a digit in one place is 10 times as much as the digit to its right and 1/10 of the digit to its left (5.NBT.1) ~I can read, write, and compare decimals to thousandth s. (5.NBT.3) ~I can read and write decimals to thousandth s using base-ten numerals, number names, and expanded form. (5.NBT.3.a) ~I can compare two decimals to thousandth s based on meanings of the digits in each place using $>$, =, and <	\sim I can represent and add and subtract decimals to the thousandths place (5.2.B, F) I can add, subtract, multiply, and divide decimals to hundredths, using concrete models or drawings and strategies and relate the strategy to a written method and explain my reasoning. (5.NBT.7) \sim I can use estimation or exact measure when adding or subtracting decimals. (5.2.E, G) I can add, subtract, multiply, and divide decimals to hundredths, using concrete models or drawings and strategies	Additional CCSS Covered: ~I can explain patterns in the number of zeros of the product when multiplying a number by powers of 10 . (5.NBT.2) \sim I can fluently multiply multi-digit whole numbers using the standard algorithm. (5.NBT.5) ~I can use parentheses , brackets, or braces in numerical expressions and evaluate these expressions . (5.OA.1) ~I can write simple expressions that record calculation s with numbers, and interpret numerical expressions	\sim I can determine quotients for multiples of 10 and 100 (5.1.B) I can find whole number quotients of whole numbers with up to 4-digit dividends and 2-digit divisors and illustrate and explain the calculation. (5.NBT.6)(CC SS does not specifically ask for multiples of 10) \sim I can divide a four-digit number by a one or twodigit divisor using the standard longdivision algorithm. (5.1. C.) I can find whole number quotients of whole numbers with up to 4-digit dividends and 2-digit divisors and illustrate and explain the calculation. (5.NBT.6)(CC SS requires algorithm in	\sim I can write rules for a pattern based on two operations (5.4.B) I can generate two numerical patterns using two given rules, identify relationships between correspondi ng terms, form ordered pairs from the patterns, and graph them on a coordinate plane. (5.OA.3)(CC SS does not require rule) \sim I can write an algebraic expression to represent a situation and apply variables (5.4.C) I can use parentheses, brackets, or braces in numerical expressions and evaluate these expressions. (5.OA.1) \sim I can place ordered pairs on a	\sim I can identify the least common multiple and greatest common factor of two numbers (5.2.D) I can find the greatest common factor of two whole numbers. (6.NS.4) \sim I can classify a number as prime or composite (5.5.A) I can find all the factor pairs of a whole number from 1-100, recognize the relationshi p between a multiple and a factor, and determine whether a number is prime or composite. (4.OA.4)	\sim I can add and subtract fractions and mixed numbers using place value models and common denominator s, LCM, GCF (5.2.A) I can add and subtract fractions with unlike denominator s. (5.NF.1) I can solve word problems involving addition and subtraction of fractions referring to the same whole by using visual fraction models or equations. (5.NF.2)(Th e CCSS do not expect students to make the connection between the visual representatio n and the equation) \sim I can use estimation or exact measure when adding or	\sim I can add and subtract fractions and mixed numbers using place value models and common denominator s, LCM, GCF (5.2.A) I can add and subtract fractions with unlike denominator s. (5.NF.1) I can solve word problems involving addition and subtraction of fractions referring to the same whole by using visual fraction models or equations. (5.NF.2)(Th e CCSS do not expect students to make the connection between the visual representatio n and the equation) \sim I can use estimation or exact measure when adding or	Missing: \sim I can construct and interpret line graphs (5.5.C) \sim I can determine and interpret the mean of a set of whole numbers. (5.5.B)	\sim I can sort angles into acute, obtuse, or right (5.3.B) I can understand concepts of angles and measure angles. (4.MD.5) I can measure angles using a protractor and sketch angles with a specified measure. (4.MD.6) I can draw and classify lines and angles. (4.G.1) \sim I can describe and sort triangles (5.3 .C) I can classify two- dimensiona l figures and recognize and identify right angles. (4.G.2)	

EnVision Math Grade 5 Curriculum Map

